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The fully nonlinear dynamics of spin and charge in spin-Calogero model is studied. The latter is an inte-
grable one-dimensional model of quantum spin-1/2 particles interacting through inverse-square interaction and
exchange. Classical hydrodynamic equations of motion are written for this model in the regime where gradient
corrections to the exact hydrodynamic formulation of the theory may be neglected. In this approximation
variables separate in terms of dressed Fermi momenta of the model. Hydrodynamic equations reduce to a set
of decoupled Riemann-Hopf �or inviscid Burgers’� equations for the dressed Fermi momenta. We study the
dynamics of some nonequilibrium spin-charge configurations for times smaller than the time scale of the
gradient catastrophe. We find an interesting interplay between spin and charge degrees of freedom. In the limit
of large coupling constant the hydrodynamics reduces to the spin hydrodynamics of the Haldane-Shastry
model.
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I. INTRODUCTION

One-dimensional �1D� models of many-body systems
have been a subject of intensive research since 1970s. Due to
the low dimensionality, standard perturbative approaches de-
veloped in many-body theory are often inapplicable. On the
other hand some techniques specific to one spacial dimen-
sion are available and allow to treat systems of interacting
particles nonperturbatively. The Fermi-liquid paradigm is re-
placed by the Luttinger liquid theory1 in one dimension. One
of its most striking predictions is that at low energies spin
and charge degrees of freedom decouple. One can say that at
low energies physical electrons exist as separate spin and
charge excitations. At higher energies it is expected that spin
and charge recombine into the original electrons. One can
see the traces of spin-charge interaction taking into account
corrections to the Luttinger liquid model arising from the
finite curvature of band dispersion at Fermi energy.1 The
coupling between spin and charge in one-dimensional sys-
tems was studied both perturbatively and using integrable
models available in one dimension.2

In this paper we study the interaction between spin and
charge in another integrable model—the spin-Calogero
model �sCM�. This model is a spin generalization3–5 of the
well-known Calogero-Sutherland model.6

Calogero-Sutherland-type models occupy a special place
in 1D quantum physics. They are exactly solvable �inte-
grable� but are very special even in the family of integrable
models. In particular, they can be interpreted as systems of
“noninteracting” particles with fractional exclusion
statistics.6–11

The sCM model is given by the following Hamiltonian:

H � −
�2

2 �
j=1

N
�2

�xj
2 +

�2

2 �
j�l

��� � P jl�
�xj − xl�2 , �1�

where we took the mass of particles as a unity and P jl is the
operator that exchanges the positions of particles j and l.3

The � sign in the exchange term corresponds to ferromag-

netic and antiferromagnetic ground state, respectively, if we
are studying fermions. Similarly, it corresponds to antiferro-
magnetic and ferromagnetic ground state, respectively, if we
are considering bosonic particles. The four cases can be sum-
marized as

Bosons → �+ ⇒ Antiferromagnetic,

− ⇒ Ferromagnetic,
�

Fermions → �+ ⇒ Ferromagnetic,

− ⇒ Antiferromagnetic.
�

The coupling parameter � is positive and N is the total num-
ber of particles.

As it has been already noted above that the sCM is a very
special model. In particular, in contrast to more generic inte-
grable or nonintegrable models the spin and charge in sCM
are not truly separated even at low energies.4 Of course, one
can still describe the low-energy excitation spectrum of sCM
by two independent harmonic fluid Hamiltonians, one for the
charge and the other for spin. However, it turns out that for
the sCM the spin and charge velocities are the same,4 i.e.,
spin and charge do not actually separate.

Here we study the spin-Calogero model in the limit of an
infinite number of particles using the hydrodynamic ap-
proach. Albeit, the collective-field theory/quantum hydrody-
namics of the spinless Calogero-Sutherland model has been
studied in great detail,12–16 a complete understanding of its
spin generalization is still lacking although a considerable
progress has been done recently in Refs. 17 and 18.

We study the nonlinear collective dynamics of sCM in the
semiclassical approximation, additionally neglecting gradient
corrections to the equations of motion. This limit is justified
as long as we consider configurations with small gradients of
density and velocity fields. The gradientless approximation is
commonly employed in studying nonlinear equations19 and
allows to study the evolution for a finite time while the first
nonlinear contributions are dominant. For longer times, the
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solution will inevitably evolve toward configurations with
large field gradients �such as shock waves� and the gradient-
less approximation becomes inapplicable. Nevertheless, in
the initial stage of the evolution, corrections due to gradient
terms in the equations of motion can be neglected �see fur-
ther discussion in the Sec. V B�. We derive the gradientless
hydrodynamics Hamiltonian from the Bethe-Ansatz �BA� so-
lution of the model.

The paper is organized as follows. In Sec. II we start with
the simplest spinful integrable model—a system of free fer-
mions with spin. We briefly review the Bethe-Ansatz solu-
tion for spin-Calogero model in Sec. III and deduce the hy-
drodynamic Hamiltonian for the sCM from this solution in
Sec. IV neglecting gradient corrections. The corresponding
classical equations of motion are given in Sec. V. It is shown
that variables separate and the system of hydrodynamic
equations is decoupled into four independent Riemann-Hopf
equations for a given special linear combinations of density
and velocity fields—the dressed Fermi momenta. In Sec. VI
we illustrate that in the limit of strong coupling the hydro-
dynamics of sCM is reduced to the hydrodynamics of
Haldane-Shastry lattice spin model giving the hydrodynamic
formulation of the so-called freezing trick.20 We present
some particular solutions of the hydrodynamic equations
demonstrating nonlinear coupling between spin and charge
degrees of freedom in the sCM in Sec. VII and conclude in
Sec. VIII. To avoid interruptions in the main part of the paper
some important technical details are moved to the appendi-
ces and are organized as follows. In Appendix A we use
asymptotic Bethe ansatz to derive the hydrodynamics of
sCM and to explain why variables separate in this system. In
Appendix B we describe the notion of true hydrodynamic
velocities. In Appendix C we relate the hydrodynamics of
sCM to two infinite families of mutually commuting con-
served quantities and collect our results for the hydrodynam-
ics in the different regimes of sCM. Finally, in Appendix D
we derive a hydrodynamic description of the Haldane-
Shastry model �HSM� from its Bethe-Ansatz solution.

II. FREE FERMIONS WITH SPIN

For one-dimensional free fermions without internal de-
grees of freedom the lowest state with a given total number
of particles and total momentum corresponds to all single-
particle plane-wave states filled if the corresponding momen-
tum k satisfies kL�k�kR. Here kL,R are left and right Fermi
momenta, respectively, which are defined by the given num-
ber of particles and momentum of the system,

N/L = �
kL

kR dk

2�
=

kR − kL

2�
= � , �2�

P/L = �
kL

kR dk

2�
�k = �

kR
2 − kL

2

4�
= �v . �3�

Here we introduced the �overall� velocity of the system v
which is given from Eqs. �2� and �3� by

v/� =
kR + kL

2
. �4�

Inverting Eqs. �2� and �4� we express the left and right Fermi
points kL,R in terms of the density � and velocity v as

kR,L = v/� � �� . �5�

The energy of this state is given by

E/L = �
kL

kR dk

2�

�2k2

2
= �2kR

3 − kL
3

12�
=

�v2

2
+

�2�2

6
�3. �6�

Up to this moment � ,v ,kR,L are just numbers characterizing
the chosen state of free fermions �only two of them are in-
dependent�. Assuming the locality of the theory we promote
these numbers to quantum fields and write the hydrodynamic
Hamiltonian of free spinless fermions as

H =� dx���x�v2�x�
2

+
�2�2

6
�3�x�	

=� dx�2 
kR�x��3 − 
kL�x��3

12�
. �7�

Here we consider ��x� and v�x� as quantum field operators of
density and velocity 
and kR,L as given by Eq. �5�� having
canonical commutation relations21


��x�,v�y�� = − i����x − y� . �8�

Of course, gradient corrections to Eq. �7� are generically
present and the above “derivation” is just a heuristic argu-
ment �semiclassical in nature�. It turns out that Eq. �7� is, in
fact, exact for free fermions.22 It can be derived rigorously
either using the method of collective-field theory23–25 or con-
ventional bosonization technique �but without linearization
at Fermi points�.1,26,27

The two terms of Eq. �7� have a very clear physical inter-
pretation. The first term is the kinetic energy of a fluid mov-
ing as a whole—the only velocity term allowed by Galilean
invariance. The second one is the kinetic energy of the inter-
nal motion of particles. This term is finite due to the Pauli
exclusion principle. Within the hydrodynamic approach we
have to think of this term as of an internal energy of the fluid.

Commuting Hamiltonian �7� with the density and velocity
operators one obtains the continuity and the Euler equations
of quantum hydrodynamics. Alternatively, using

kL�x� ,kL�y��=−
kR�x� ,kR�y��=2�i���x−y� the equations of
motion can also be written as a system of quantum Riemann-
Hopf equations

k̇R,L + �kR,L�xkR,L = 0. �9�

For free fermions with spin, we simply add Hamiltonians �7�
written for spin-up and spin-down fermions,

H =� dx�1

2
�↑v↑

2 +
1

2
�↓v↓

2 +
�2�2

6
��↑

3 + �↓
3�� . �10�
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Expanding Eq. �10� around the background density
�0=

kF

� and the background velocity v0=0 up to quadratic
terms in v	 and ��	=�	−�0, we obtain the harmonic fluid
approximation

H �
�0

2
� dx�v↑

2 + �2�2��↑
2 + v↓

2 + �2�2��↓
2�

�
�0

4
�2 �

	=↑,↓
� dx
��x
R,	�2 + ��x
L,	�2� �11�

with right and left bosonic fields defined as �x
R�L�,	
=v	 /�����	. This procedure is equivalent to the conven-
tional linear bosonization procedure where the fermionic
spectrum is linearized at the Fermi points.

In the spin-charge basis,

�c,s � �↑ � �↓ and vc,s =
v↑ � v↓

2
, �12�

the harmonic theory 
Eq. �11�� is described by a sum of two
independent harmonic fluid Hamiltonians, one for charge and
the other for spin degrees of freedom

H �
�0

4
� dx�4vc

2 + �2�2��c
2 + 4vs

2 + �2�2��s
2� . �13�

After linearization, the quantum Riemann-Hopf Eq. �9� re-
duces to �where � stands for �= R ,L� respectively�

k̇	,� � ���0�xk	,� = 0, 	 = ↑ ,↓�; �14�

from which we identify that the quadratic excitations
propagate like wave equations with sound velocities ucharge
=uspin=���0, equal for spin and charge. Turning on interac-
tions between fermions generally renormalizes spin and
charge sound velocities differently and results in genuine
spin-charge separation at the level of harmonic approxima-
tion. The spin-Calogero-Sutherland model happens to be
very special in this respect. Despite a nontrivial interaction
for spin and charge, their sound velocities remain the same.

Although spin and charge are not truly separated for a free
fermion system �and for the sCM�, the interaction between
spin and charge is absent at the level of harmonic approxi-
mation �13�. This interaction appears if nonlinear corrections
to Eq. �13� are taken into account 
e.g., by the fully nonlinear
Hamiltonian �10�� and due to gradient corrections to the hy-
drodynamics. The latter are not considered in this paper.

In the proper classical limit �→0 all terms of Eq. �10� but
the velocity terms vanish �Fermi statistics does not exist for
classical particles�. Instead, we are interested in a “semiclas-
sical” limit in which ��v /�. In this limit we rescale time
and velocity by � �t→ t /� and v→�v� and measure every-
thing in length units. This is equivalent to dropping all �
from equations. For instance, Hamiltonian �10� becomes

H =� dx�1

2
�↑v↑

2 +
1

2
�↓v↓

2 +
�2

6
��↑

3 + �↓
3�� . �15�

We replace the commutation relations 
Eq. �8�� by the
corresponding classical Poisson brackets �for up and down
species�

�	�x�,v��y�� = �	����x − y� �16�

and consider the classical equations of motion generated by
the Hamiltonian together with the Poisson brackets. In the
remainder of the paper all hydrodynamic equations are ob-
tained in this semiclassical limit.

III. SPIN-CALOGERO MODEL

In this work we concentrate on the hydrodynamics of
sCM 
Eq. �1�� for the case of spin-1/2 fermions with an
antiferromagnetic sign of interaction. It is convenient to im-
pose periodic boundary conditions, i.e., consider particles
living on a ring of the length L. This Hamiltonian is given by

H = −
�2

2 �
j=1

N
�2

�xj
2 +

�2

2
��

L
�2

�
j�l

��� − P jl�
sin2 �

L �xj − xl�
�17�

and is known to be integrable.6 All eigenstates of Eq. �17�
can be enumerated by the distribution function

��� = ↑��� + ↓��� . �18�

Here, � are integer-valued quantum numbers identifying a
given state in a Bethe-Ansatz description and ↑,↓���=0,1
depending on whether a given � is present in the solution of
the Bethe-Ansatz equations.

The total momentum P and energy E of the eigenstate are
given in terms of the distribution function ��� as28,29

P = �2�

L
� �

�=−�

+�

���� , �19�

E = E0 + �1

2
��2�

L
�2

� , �20�

� = �
�=−�

+�

�2��� +
�

2 �
�,��

�� − ���������� , �21�

where E0= �2�2

6 N�N2−1� is the energy of a reference state.29

The numbers of particles with spin up and spin down are
separately conserved in Eq. �17� and are given by

N↑,↓ = �
�=−�

+�

↑,↓��� . �22�

The ground-state wave function for Eq. �17� is4,29

�GS = �
j�l
�sin

�

L
�xj − xl���

�
j�l

�sin
�

L
�xj − xl�	���j,�l�

�exp�i
�

2
sgn�� j − �l�	 �23�

and corresponds to the distributions30

↑��� = ��− N↑/2 � � � N↑/2� ,

↓��� = ��− N↓/2 � � � N↓/2� . �24�
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IV. GRADIENTLESS HYDRODYNAMICS OF SPIN-
CALOGERO MODEL

Following the example of free fermions, we consider a
uniform state specified by the following distributions:

↑��� = ���L↑ � � � �R↑� , �25�

↓��� = ���L↓ � � � �R↓� . �26�

This state is the lowest-energy state with given numbers of
particles, momentum, and total spin current. It is specified by
four integer numbers �L,R;↑,↓. All physical quantities such as
energy, momentum, and higher integrals of motion of the
state can be expressed in terms of these numbers using Eqs.
�22�, �19�, and �20�. These conserved quantities written as
integrals over constant quantities are

N	 =� dx�	 =
2�

L
� dx��R	 − �L	

2�
	, 	 = ↑ ,↓� ,

�27�

P =� dxjc = �2�

L
�2

�
	=↑,↓�

� dx��R	
2 − �L	

2

4�
	 . �28�

Comparison with Eqs. �2� and �3� suggests the following
hydrodynamic identifications:

v↑ � ��↑ �
2�

L
��R,L�;↑, �29�

v↓ � ��↓ �
2�

L
��R,L�;↓. �30�

In the main body of the paper we use v↑,↓ and refer to them
as to “velocities.” At this point they have been introduced
“by analogy” with the case of free fermions. In Appendices
A–C we show that these velocities are indeed conjugated to
the corresponding densities and explain their relations to the
true hydrodynamic velocities. In fact, in the most interesting
case to us, namely, the complete overlap �CO� regime �see
below� these velocities coincide with the true hydrodynamic
velocities defined in Appendix B. The total momentum 
Eq.
�28�� of the system in terms of Eqs. �29� and �30� is

P =� dx��↑v↑ + �↓v↓� . �31�

One can also express the energy 
Eq. �20�� in terms of these
hydrodynamic variables. Because of the nonanalyticity �pres-
ence of an absolute value� in formula �20� it is convenient to
consider different physical regimes. These regimes are de-
fined by the mutual arrangement of the supports of the dis-
tribution functions 
Eqs. �25� and �26��. There are six differ-
ent regimes that reduce to three physically nonequivalent
ones using the permutation ↑↔↓. The distributions corre-
sponding to different regimes are shown in Fig. 1:

�1� Complete Overlap (CO) regime. The support of ↓ is
completely contained in ↑ �or vice versa�. This is the regime
considered in Ref. 4, where its exact solution was given.

�2� Partial Overlap (PO) regime. The supports of ↑ and
of ↓ only partially overlap.

�3� No Overlap (NO) regime. The supports of ↑ and of ↓
do not overlap at all.

Notice that the small fluctuations around the singlet
ground state �with �s=0� belong to first two regimes.

In terms of the hydrodynamic variables the three regimes
are summarized in Fig. 2 and are defined by the following
inequalities:

Complete overlap → �vs� �
�

2
��s� , �32�

Partial overlap →
�

2
��s� � �vs� �

�

2
�c, �33�

No overlap →
�

2
�c � �vs� , �34�

where we switched to the spin and charge degrees of free-
dom defined by Eq. �12�.

(a) (b) (c)

FIG. 1. �Color online� Distribution functions are shown for the three nonequivalent regimes: complete overlap in �a�, partial overlap in
�b�, and no overlap in �c�. Three additional regimes exist but are physically equivalent to the ones considered in these pictures and can be
obtained by exchanging ↑↔↓.

FIG. 2. Diagram capturing all cases.

KULKARNI, FRANCHINI, AND ABANOV PHYSICAL REVIEW B 80, 165105 �2009�

165105-4



To simplify the presentation we give here formulas only
for the CO regime

−
��s

2
� vs �

��s

2
, �35�

where we also assumed that �s�0. The opposite case
�s�0 can be obtained exchanging up and down variables.
The other regimes and formulas valid for all regimes are
considered in detail in Appendix C.

In the CO regime 
Eq. �35��, the Hamiltonian can be writ-
ten as

HCO =� dx�1

2
�↑v↑

2 +
1

2
�↓v↓

2 +
�

2
�↓�v↑ − v↓�2 +

�2�2

6
�c

3

+
�2

6
��↑

3 + �↓
3� +

��2

6
�2�↑

3 + 3�↑
2�↓ + 3�↓

3�� . �36�

It is obtained by expressing Eqs. �20� and �21� in terms of
hydrodynamic variables 
Eqs. �29� and �30�� using Eq. �35�.
As in the case of free fermions �see Sec. II� we now consider
�↑,↓�x , t� and v↑,↓�x , t� as space and time-dependent classical
hydrodynamic fields with Poisson brackets 
Eq. �16��. Of
course, going from the energy of the uniform state 
Eqs. �25�
and �26�� to the nonuniform hydrodynamic state we ne-
glected gradients of density and velocity fields. We refer to
this approximation as to gradientless hydrodynamics. The
equations of motion generated by Hamiltonian �36� with
Poisson brackets 
Eq. �16�� can be used only when gradients
can be neglected as compared to the gradientless terms. This
means that one can use this gradientless hydrodynamics only
at relatively small times �compared to the time of the gradi-
ent catastrophe, see the discussion below�.

Before analyzing more general case let us consider some
special limits of Eq. �36�.

A. Spinless limit

In the fully polarized state �↓=0 we obtain from Eq. �36�
the gradientless Hamiltonian for spinless Calogero-
Sutherland model

Hspinless = �
−�

+�

dx�1

2
�v2 +

�2

6
�� + 1�2�3� , �37�

where we dropped the subscript ↑. The hydrodynamics 
Eq.
�37�� was used in Ref. 31 to calculate the leading term of an
asymptotics of a particular correlation function �emptiness
formation probability� for the Calogero-Sutherland model. It
can be, of course, obtained by dropping gradient terms in the
exact hydrodynamics derived using collective-field
theory.13–15

B. �=0—free fermions with spin

At the particular value �=0 the sCM reduces to free fer-
mions with spin and Hamiltonian �36� becomes the collec-
tive Hamiltonian for free fermions 
Eq. �15��.

C. �\� limit

In the limit of large coupling constant �→� the particles
form a rigid-lattice and charge degrees of freedom essentially

get frozen.20 We expect to arrive to an effective spin dynam-
ics equivalent to the Haldane-Shastry model32,33 �see Appen-
dix D�. This reduction to the Haldane-Shastry model is usu-
ally referred to as freezing trick.20 We analyze this reduction
in more detail in Sec. VI.

V. EQUATIONS OF MOTION AND SEPARATION OF
VARIABLES

A. Equations of motion

The classical gradientless hydrodynamics for sCM is
given by Hamiltonian �36� with canonic Poisson’s brackets

Eq. �16��. The classical evolution equations generated by
this Hamiltonian are

�̇↑ = − �x�↑v↑ + ��↓�v↑ − v↓�� ,

�̇↓ = − �x�↓v↓ − ��↓�v↑ − v↓�� ,

v̇↑ = − �x�v↑
2

2
+

�2�2

2
��↑ + �↓�2 + ��2��↑

2 + �↑�↓� +
�2

2
�↑

2� ,

v̇↓ = − �x�v↓
2

2
+

�

2
�v↑ − v↓�2 +

�2�2

2
��↑ + �↓�2

+
��2

2
��↑

2 + 3�↓
2� +

�2

2
�↓

2� . �38�

This is the system of continuity and Euler’s equations for
two coupled fluids �with spin up and spin down�. We can
also rewrite it in terms of spin and charge variables 
Eq.
�12��

�̇c = − �x�cvc + �svs� ,

�̇s = − �x�s�vc − 2�vs� + �2� + 1��cvs� ,

v̇c = − �x�vc
2

2
+ �2� + 1�

vs
2

2
+

�2

8

�2� + 1�2�c

2 + �2� + 1��s
2�� ,

v̇s = − �x�vcvs − �vs
2 +

�2

4
�s
�2� + 1��c − ��s�� . �39�

One can see that spin and charge are not decoupled. It turns
out, however, that the variables nevertheless separate and the
system of four coupled Eq. �38� can be written as four de-
coupled Riemann-Hopf equations 
similar to Eq. �9�� for a
special linear combinations of density and velocity fields. In
the following we study the interaction of spin and charge
governed by the above equations.

B. Free fermions (�=0) and Riemann-Hopf equation

At �=0 Eq. �38� becomes the hydrodynamic equations for
free fermions. Fluids corresponding to up and down spin are
completely decoupled

�̇↑,↓ = − �x�↑,↓v↑,↓� , �40�
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v̇↑,↓ = − �x�1

2
v↑,↓

2 +
�2

2
�↑,↓

2 � . �41�

Let us introduce the following linear combinations of densi-
ties and velocities

kR↑,L↑ = v↑ � ��↑,

kR↓,L↓ = v↓ � ��↓. �42�

These combinations are nothing else but right and left Fermi
momenta of free fermions. All of them satisfy the so-called
Riemann-Hopf equation

ut + uux = 0. �43�

The equation is the same for all four combinations
u=kR,L;↑,↓ and the system 
Eqs. �40� and �41�� is equivalent
to four decoupled Riemann-Hopf equations.

The Riemann-Hopf Eq. �43� is easily solvable with the
general solution given implicitly by

u = u0�x − ut� . �44�

Here u0�x� is an initial profile of u�x , t� at t=0. One should
solve Eq. �44� with respect to u and find u�x , t�—the solution
of Eq. �43� with u�x , t=0�=u0�x�. The solution �44� can also
be written in a parametric form

x = y + tu0�y� ,

u�x,t� = u0�y� . �45�

This solution corresponds to the “Lagrangian picture” of
fluid dynamics and states that points in the x−u plane are just
translated along x with velocity u, i.e., �x ,u0�→ �x+ tu0 ,u0�.
This picture is especially useful to solve Eq. �43� numeri-
cally.

We notice here that the nonlinear dynamics 
Eq. �43��
without dispersive �higher gradient� terms is ill defined at
large times. For any initial profile u0�x�, at large times
t� tc infinite gradients ux will develop—gradient
catastrophe—and solutions of Eq. �44� will become multi-
valued. The classical Eq. �43� will not have a meaning for
t� tc. We refer to the time tc �function of the initial profile�

as to the gradient catastrophe time. The gradientless hydro-
dynamics is applicable only for times smaller that tc.

34 We
will discuss in more detail about validity of gradientless hy-
drodynamics in Sec. VII.

We present a simple illustration of the density and veloc-
ity dynamics for free fermion system in Fig. 3. It is enough
to consider only up spin as the evolution of up and down
spins is decoupled. We chose the initial profile of the density
as Lorentzian with the half width a and height h

�0↑�x� =
h

1 + �x/a�2 �46�

and an initial velocity zero. We find the initial profiles of
k↑;R,L using Eq. �42�. Then we solve the Riemann-Hopf Eq.
�43� using Eq. �45� and find the density and velocity at any
time inverting Eq. �42�. We remark that for an arbitrary
smooth bump of height h and width a the gradient catastro-
phe time can be estimated as tc� a

h . For the evolution given
by Eq. �43� with an initial Lorentzian profile 
u0�x� given by
Eq. �46�� one can compute the gradient catastrophe time ex-
actly. An infinite gradient �xu→� develops at the time

tc =
8

3�3

a

h
. �47�

For arbitrary initial conditions we compute the gradient ca-
tastrophe time numerically.

C. Riemann-Hopf equations for sCM

Although the system of Eq. �38� is a system of four
coupled nonlinear equations, it allows for a separation of
variables. Introducing the linear combinations of fields

kR↑,L↑ = v↑ � �
�� + 1��↑ + ��↓� = �v↑ � ��↑� � ���c,

�48�

kR↓,L↓ = �� + 1�v↓ − �v↑ � ��2� + 1��↓

= �v↓ � ��↓� + ��− 2vs � 2��↓� . �49�

we obtain the Riemann-Hopf Eq. �43� separately for all four
u=kL,R,↑,↓.

(a) (b)

FIG. 3. �Color online� Dynamics of density field �↑�x� �left panel� and of velocity field v↑�x� �right panel� for free a fermion case
��=0�. The initial density profile at t=0 is a Lorentzian �46� of height h=0.25 and half width a=4. The initial velocity is zero.
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This property of variable separation is shared with the
free fermion case Sec. V B. We notice, however, that in the
case of sCM, variables separate only in gradientless approxi-
mation. The gradient terms neglected in this paper will
couple the hydrodynamic equations in an essential
nonseparable35 way.

The separation of variables in terms of Eqs. �48� and �49�
is not so surprising. One can recognize Eqs. �48� and �49� as
dressed �physical� “Fermi” momenta of �asymptotic� Bethe
Ansatz. The integrals of motion of sCM are separated in
terms of these Fermi momenta and the same is true for the
equations of motion. We do not interrupt the presentation
with this connection with the Bethe-Ansatz solution of sCM
but devote the Appendix A to this purpose.

It is convenient to summarize the gradientless hydrody-
namics of sCM by the picture in a “single-particle” phase
space showing space-dependent Fermi momenta.36 We plot
the space-dependent Fermi momenta in an x−k plane as four
smooth lines. In the CO regime considered here �see Appen-
dix C for other regimes� the Fermi momenta are ordered as

kL↑�x� � kL↓�x� � kR↓�x� � kR↑�x� . �50�

We fill the space between those lines with particles obeying
the following rules of particles with fractional exclusion
statistics11 �see Appendix A� �i� each particle occupies a
phase-space volume 2���+1� if there are no particles of the
other species in this volume, �ii� two particles with
opposite spins occupy a phase-space volume 2��2�+1�

or 2���+1 /2� per particle�. The velocity v↑�x� is visualized
as a center of a spin-up stripe on Fig. 4 
see Eq. �B5��. The
interpretation of v↓�x� is a bit less straightforward. It should
be thought as a weighted average of positions of centers of
both stripes 
Eq. �B5��.

VI. FREEZING TRICK AND HYDRODYNAMICS OF
HALDANE-SHASTRY MODEL

Here we consider the limit of large coupling constant
�→�. In this limit we expect that particles form a one-
dimensional lattice and only spin dynamics is important at
low energies. We refer to this limit as to a freezing of the

charge. We are interested in fluctuations around the uniform
state with a given charge density. It can be seen from Fig. 4
that particles occupy the volume 2���+1 /2� of the phase
space when both species are present. Therefore, the natural
expansion parameter is �=�+1 /2 instead of �.37 We will see
that the leading in � term of the dynamics results in charge
freezing while the next to leading term gives the nontrivial
spin dynamics of the lattice model known as the Haldane-
Shastry model32,33

HHSM = 2�
j�l

Sj · Sl

�j − l�2 . �51�

This model is known to be integrable.6 The freezing proce-
dure described is referred to as “freezing trick” and was in-
troduced by Polychronakos.20 Our goal is to implement the
procedure in a hydrodynamic description.

Before proceeding to a regular expansion of the equations
of motion we start with a heuristic argument. We rewrite the
hydrodynamic Hamiltonian �36� in terms of spin and charge
variables 
Eq. �12�� and consider first the two leading terms
in a 1 /� expansion

H =� dx�1

2
�cvc

2 + �svcvs + ��cvs
2 − �� −

1

2
��svs

2 +
�2�2

6
�c

3

+
�2

4
��c�s

2 −
�2

12
�� −

1

2
��s

3�s �52�

=� dx��2

6
�2�c

3 + ���cvs
2 − �svs

2 +
�2�c�s

2

4
−

�2�s
3

12
	

+ O�1�� . �53�

The first term proportional to �2 comes from the energy of a
static lattice while the second term proportional to � gives
the Hamiltonian of the Haldane-Shastry model in the hydro-
dynamic formulation �see Appendix D�, i.e., describes the
spin dynamics. Note that �c here should be considered as a
constant equal to the inverse lattice spacing of the charge
lattice.

To build a systematic expansion in 1 /� we go to the
hydrodynamic evolution equations given in Eq. �39�. We in-
troduce the following series in 1 /�=1 / ��+1 /2� for the
space-time-dependent fields.

u = u�0� +
1

�
u�1� +

1

�2u�2� + ¯

u → �c,vc,�s,vs

and rescale time t=� /� �or �t=����. We substitute these ex-
pansions into Eq. �39� and compare order by order in �. Let
us consider few leading orders explicitly.

A. O(�)

In this order the only nontrivial equation gives

FIG. 4. �Color online� Phase-space diagram of a hydrodynamic
state characterized by four space-dependent Fermi momenta.
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0 = − �x
�c
�0�2

� �54�

and implies that �c
�0� is constant in space.

B. O(1)

At this order we have

�̇c
�0� = 0, �55�

�̇s
�0� = − �x2�c

�0�vs
�0� − 2�s

�0�vs
�0�� , �56�

v̇c
�0� = − �x�vs

�0�2
+ �2�c

�0��c
�1� +

�2

4
�s

�0�2� , �57�

v̇s
�0� = − �x�− vs

�0�2
+

�2

2
�c

�0��s
�0� −

�2

4
�s

�0�2� . �58�

Combining Eqs. �54� and �55� we see that �c
�0� is a constant

independent of space time. The evolution Eq. �56� for spin
density, �̇s

�0� and Eq. �58� for the spin velocity v̇s
�0� do not

depend on the dynamics of the charge and are precisely the
ones obtained for the Haldane-Shastry model 
compare to
Eq. �D17��. We refer the reader to the Appendix D for more
details on the hydrodynamics of the Haldane-Shastry model.

Equation �57� is important in resolving a well-known
“paradox.” In the original spin-Calogero model the momen-
tum of the system is identical to the total charge current since
all particles in the model have the same charge. On the other
hand in the Haldane-Shastry model the momentum is carried
by spin excitations and superficially no charge motion is in-
volved. One can ask how this is compatible with getting the
Haldane-Shastry model in the limit �→� from the spin-
Calogero model. Equation �57� is necessary to make sure
that the the current density j�x�=�cvc+�svs is globally con-
served at a given order in 1 /�. Since �c

�0� is a constant in
space time we expect from Eqs. �56� and �58� that vc

�0�

evolves according to Eq. �57� to ensure that the current den-
sity is conserved. As a result, there is a charge motion asso-
ciated with the momentum but in the large � limit this “re-
coil” momentum is absorbed by the whole charge lattice.

C. O(1 Õ�)

For the sake of brevity we do not write down the
equations at this order but make some comments instead.
In the previous order, O�1� we noticed 
see Eqs. �56� and
�58�� that spin degrees of freedom evolve as the charge is
essentially frozen and at that order there is no feedback of
the charge degrees of freedom on the spin. However,
in the order O�1 /�� we have feedback terms in both
evolution equations for �s and vs. As an example
we have �̇s

�1�=−�x. . .+2vs
�0��c

�1�+vc
�0��s

�0�+. . .� and
v̇s

�1�=−�x. . .+vc
�0�vs

�0�+ �2

2 �c
�1��s

�0�+ . . . .� which clearly show
that there is a charge feedback into the spin sector.

D. Evolution equations for Haldane-Shastry model from the
freezing trick

The shortest way to evolution equations for Haldane-
Shastry model is to take �→� limit directly in Riemann-

Hopf Eq. �43�. After rescaling time t=� /� we have

k̃� + k̃k̃x = 0, �59�

where k̃=k /�=k / ��+1 /2�. In the large � limit we

have using Eqs. �48� and �49� k̃R↑,L↑→ ���c and

k̃R↓,L↓=−2vs�2��↓. Then the Eq. �59� gives evolution equa-
tions for Haldane-Shastry model with Eqs. �D12� and �D15�.

VII. ILLUSTRATIONS

It is relatively simple to obtain the evolution of arbitrary
�smooth� initial density and velocity profiles solving equa-
tions of the gradientless hydrodynamics 
Eq. �39�� numeri-
cally. One can do it very effectively using the fact that the
dynamics is separated into four Riemann-Hopf Eq. �43� and
using their general solutions �45�. In this section we give
numerical results for charge and spin dynamics correspond-
ing to a relaxation of a �spin� polarized center. These results
show that due to nonlinearity of equations spin can drag
charge in spin-Calogero model. We notice here that in the
examples considered in this section the dynamics belongs to
CO regime.38

A. Charge dynamics in a spin-singlet sector

As a first example we consider initial conditions
�s ,vs=0 and some arbitrary initial conditions for �c and vc. It
is easy to see from Eq. �39� that spin density and spin veloc-
ity remain zero at any time while charge degrees of freedom
satisfy

�̇c = − �x��cvc� ,

v̇c = − �x�vc
2

2
+

�2�� + 1
2�2�c

2

2
� . �60�

Hydrodynamics 
Eq. �60�� is identical to the one of the
Calogero-Sutherland model with one species of particles
�except for the change �+1→�+1 /2�. It can be written
as a system of two Riemann-Hopf Eq. �43� for fields
vc����+1 /2��c.

We conclude that the charge dynamics does not affect
spin in a spin-singlet state at least in the gradientless limit. It
is interesting to see how spin dynamics affects the charge
one.

B. Dynamics of a polarized center

To see how spin drags charge we start with an initial
configuration with static and uniform charge background. We
assume that initially there is no spin current but there is a
nonzero polarization given by a Lorentzian profile,

t = 0:�c = 1, vc = 0, vs = 0, �s =
h

1 + �x/a�2 , �61�

i.e., there is an excess of particles with spin up over particles
with spin down near the origin. The maximal polarization is
h and a half width of the polarized center is a. As an illus-
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tration of spin and charge dynamics we present a solution of
Eq. �39� with initial conditions 
Eq. �61�� corresponding to
h=0.25 and a=4. Some important comments are in order.

1. Applicability of gradientless hydrodynamics

The hydrodynamic equations we use 
Eq. �39�� neglect
gradient corrections and, therefore, are approximate. They
can be applied only under the condition that the neglected
higher gradient terms are small compared to the terms taken
into account in Eq. �39�. Of course, the exact criteria can be
written only when the form of the higher gradient terms are
known explicitly. Here, we are going to use a much simpler
criterion. We require that all fields change slowly at the scale
of the interparticle spacing. The uniform background �c=1
defines the interparticle spacing and the characteristic scale
for hydrodynamic fields to be 1 and we require �xf �1 for all
fields at all x and t that we consider.

One can easily check that �x�s�x , t=0��0.1 for all x with
the initial profile 
Eq. �61�� �in fact, the maximal derivative

is approximately 0.041�. Because of the gradient catastrophe
this condition will be broken at some time and we can trust
the results obtained from Eq. �39� only up to that time. To be
well within this criterion all our fields satisfy �xf �0.3 at any
given time.

Let us start with the solutions for the case of free fermi-
ons, i.e., �=0.

2. Free fermions with spin: �=0

We present the results for spin and charge dynamics of
free fermions with polarized center initial conditions

Eq. �61�� on left panels of Figs. 5 and 6. The profiles �s�x�
and �c�x�−1 are shown as functions of x for times
�=0,1 ,3 ,5 ,7, respectively. Here we use a rescaled time
�= ��+1 /2�t= t /2 for future convenience.

The dynamics is separated into four Riemann-Hopf equa-
tions for each Fermi momenta. The initial conditions 
Eq.
�61�� can be written as Lorentzian peaks for each of the four
Fermi momenta of fermions and all four Fermi velocities are

(a) (b)

FIG. 5. �Color online� Left panel: Spin dynamics of polarized center for free fermions. The initial charge-density profile is constant and
the initial spin-density profile is a Lorentzian �61� of a height h=0.25 and a half width a=4. Profiles at times �= t /2=0,1 ,3.5,7 are shown.
Right panel: A snapshot of spin density at time t=� / ��+1 /2� for �=7 for �=0,1 ,�.

(a) (b)

FIG. 6. �Color online� Left panel: Charge dynamics of polarized center for free fermions. The initial charge-density profile is constant and
the initial spin-density profile is a Lorentzian �61� of a height h=0.25 and a half width a=4. Profiles at times �= t /2=0,1 ,3.5,7 are shown.
Right panel: A snapshot of a rescaled charge density ��+1 /2���c−1� at time t=� / ��+1 /2� for �=7 for �=0,1 ,�.
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different. This results in a splitting of an initial Lorentzian
peak into four peaks at larger times which can be easily seen
on the left panel of Fig. 5. In addition to this linear effects
the nonlinear effects of steepening the wave front can also be
seen. The latter will render gradientless hydrodynamics inap-
plicable at later times.

The drag of charge by spin clearly seen in Fig. 6 has an
essentially nonlinear nature. There is an excess �deficit� of
particles with spin up �down� at the origin at the initial mo-
ment. The particles with spin up will move away from the
center while spin-down particles will move toward the cen-
ter. However, the average velocity of spin-up particles is
larger than the average velocity of spin-down particles as it is
proportional to the density of those particles. Therefore, the
initial motion of particles away and toward the origin creates
a charge depletion in the center and charge-density maxima
away from that depletion. This gives a qualitative explana-
tion of the picture of charge dragged by spin which is shown
in the left panel of Fig. 6. Notice that in this explanation we
used the dependence of propagation velocity on the ampli-
tude of the wave—an essentially nonlinear effect.

3. � dependence of spin and charge dynamics

To see the effects of the interaction on spin and charge
dynamics we show the spin- and charge-density profiles at a
fixed time for different values of the coupling constant � in
the right panels of Figs. 5 and 6, respectively. It is convenient
to use the scaling dictated by the �→� limit considered in
detail in Sec. VI. Namely, we use a rescaled time
�= ��+1 /2�t and rescale the deviation of the charge density
from the uniform by background plotting ��+1 /2���c−1� for
the charge density. The charge and density profiles found at
�=7 are remarkably close for � ranging from the free fer-
mion case �=0 to the limit of Haldane-Shastry model
�→�.

The results confirm that the effect of spin dynamics on
charge is suppressed by 1 /� for large �. For a given initial
spin-density profile the maximal amplitude of charge devia-
tion is of the order 1 / ��+1 /2�.

VIII. CONCLUSIONS

In this paper we considered a classical two-fluid hydrody-
namics derived as a semiclassical limit of the quantum sCM
defined in Eq. �17�. The model 
Eq. �17�� is essentially quan-
tum as it involves identical particles and a particle permuta-
tion operator. There is an essential ambiguity in how one
takes a semiclassical limit. Here we considered a limit which
is obtained when the density of particles goes to infinity so
that �� is kept finite in the limit �→0. We have also ne-
glected gradient corrections to hydrodynamic equations as-
suming that fields change very slowly on the scale of the
interparticle spacing. With all these assumptions, hydrody-
namic equations are obtained from the Bethe-ansatz solution
of sCM. They have the simplest form when written in terms
of fields corresponding to dressed Fermi momenta of Bethe
ansatz. In terms of these fields 
Eqs. �48� and �49��,

equations separate into four independent Riemann-Hopf Eq.
�43� which are trivially integrable.

We presented some particular solutions of the hydrody-
namic equations illustrating interactions between spin and
charge. There is no true spin-charge separation in sCM.
However, in the limit of large coupling constant �→� the
spin degrees of freedom do not affect the dynamics of charge
degrees of freedom. The spin dynamics then is described by
the hydrodynamics of Haldane-Shastry spin model. We con-
sidered explicitly both this limit ��→�� and the limit
��=0� of free fermions with spin.

The quantum-scattering phase of particles interacting via
1 /x2 potential is momentum independent. Moreover, it is the
same for particles of the same species and for particles of
different species because of the SU�2� invariance of Eq. �17�.
It is well known that this allows one to describe sCM as a
model of free exclusions—particles obeying an exclusion
statistics.7–10 We do not keep the SU�2� invariance of the
original quantum model 
Eq. �17�� explicitly when taking the
classical limit. However, this invariance is responsible for
the variable separation that we observed in our hydrodynam-
ics. We note here that sCM can be generalized to the “mul-
tispecies Calogero model.”39 Because of the absence of the
SU�2� invariance for a more general two-species Calogero
model one does not have the separation of variables for the
corresponding hydrodynamics.

The classical gradientless hydrodynamics derived in this
paper captures a lot of the features of sCM. It is straightfor-
ward to generalize our results to the case of the SU�n� Calog-
ero model and to use the gradientless hydrodynamic equa-
tions for problems where field gradients can be neglected. In
a separate publication �see Ref. 40� we use these equations in
instanton calculations for the computation of emptiness for-
mation probability similar to what was done in Refs. 31 and
41.

However, some important features of the hydrodynamic
description do require an account of gradient corrections.
First of all, the exact hydrodynamic equations are expected
not to have an exact separation of variables. The obtained
Riemann-Hopf Eq. �43� acquire gradient corrections and four
such equations written for Eqs. �48� and �49� are expected to
be coupled by those gradient corrections similarly to the case
of the one-species Calogero-Sutherland model.42 Similarly,
we expect that the equations with gradient corrections will
have soliton solutions corresponding to quasiparticle excita-
tions of the quantum model 
Eq. �17��.6,15,42

The hydrodynamic description of quantum sCM has been
addressed in Refs. 17 and 18 using the collective-field-theory
approach. The comparison of our results with results of those
works is not straightforward. One should apply the collective
formulation of Refs. 17 and 18 to the states from an appro-
priate sector of coherent states and take a corresponding clas-
sical limit. It would be especially interesting to see how the
three hydrodynamic regimes discussed here appear from
Refs. 17 and 18. One can also recognize a lot of similar
looking terms in quantum hydrodynamics of Refs. 18 and in
our classical gradientless hydrodynamics. It would also be
very important to understand the role of the degeneracy due
to the Yangian symmetry in sCM on its hydrodynamics. The
latter degeneracy was neglected in the classical hydrodynam-
ics of this paper.
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APPENDIX A: ASYMPTOTIC BETHE-ANSATZ SOLUTION
OF SPIN-CALOGERO MODEL AND SEPARATION OF

VARIABLES IN HYDRODYNAMICS

The spin-Calogero model is solvable by asymptotic Bethe
Ansatz �ABA�.6,28,43 This solution turns out to be the most
convenient for our purposes.

The most important ingredient of ABA is the scattering
phase which is given by

��k� = �� sgn�k� �A1�

for sCM. Here k is the relative momentum of two particles
and the scattering phase does not depend on the species of
particles. The expression for the dressed �true physical� mo-
mentum of the particle is given by

k��� =
2�

L �� +
�

2
�

−�

�

sgn�� − �������d��	 , �A2�

where � is an integer-valued noninteracting momentum of
the particle �quantum number� and ��� is the number of
particles with quantum number � 
see Eq. �18��. Here we
replaced in the scattering phase sgn�k−k�� by sgn��−���.44

We immediately obtain from Eq. �A2�

L
dk

2�
= 
1 + �����d� �A3�

and

↑�↓����d� = L
↑�↓��k�

1 + ��k�
dk

2�
. �A4�

We can see that the picture corresponding to Eq. �A4� in a
single-particle phase space requires that the number of par-

ticles in the phase-space volume is given by dxdk
2���+1� if only

one species is present and dxdk
2���+1/2� when both species are

present. This justifies the picture we used �see Figs. 4 and 7�.
It is easy to write down the expressions for the conserved

quantities using Eq. �A4�,

N↑�↓� = L�
−�

+� dk

2�

↑�↓��k�

1 + ��k�
, �A5�

P = L�
−�

+� dk

2�

�k�
1 + ��k�

k , �A6�

Ps = L�
−�

+� dk

2�

s�k�
1 + ��k�

k , �A7�

E = L�
−�

+� dk

2�

�k�
1 + ��k�

k2

2
. �A8�

Here Ps is a conserved quantity proportional to L1
z intro-

duced in Ref. 45

P̂s � − i�
j=1

N

� j
z �

�xj
− i

�

2

�

L
�
j�l

cot
�

L
�xj − xl�
� j

z − �l
z�Pjl.

�A9�

One can think of, e.g., P↑= �P+ Ps� /2 as of a sum of
asymptotic values of momenta of spin-up particles. We have
replaced summations by integrations as we need only con-
tinuous versions of these formulas. It can be shown that Eqs.
�A5�, �A6�, and �8� are equivalent to Eqs. �22�, �19�, and �20�
with the relation between physical and noninteracting mo-
menta given by Eq. �A2�. Moreover, because the measure of
integration dk

2�

↑�↓��k�
1+��k� is a piecewise constant for the two-step

distribution 
Eq. �24��, one naturally obtains integrals of mo-
tion in a form which is completely separated in terms of
Fermi momenta. Indeed for a two-step distribution 
Eq. �24��

	 = �1, if kL	 � k � kR	

0, otherwise
� , �A10�

where 	= ↑ ,↓. In the CO regime 
Eq. �50�� we have

(a) (b) (c)

FIG. 7. �Color online� Phase-space diagrams of a hydrodynamic states characterized by four space-dependent Fermi momenta in three
regimes CO, PO, and NO, respectively.
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�
−�

� dk

2�

↑�k�
1 + ��k�

f�k�

= �
kL↑

kL↓ dk

2�

1

1 + �
f�k� + �

kL↓

kR↓ dk

2�

1

1 + 2�
f�k�

�+ �
kR↓

kR↑ dk

2�

1

1 + �
f�k� ,

�
−�

� dk

2�

↓�k�
1 + ��k�

f�k� = �
kL↓

kR↓ dk

2�

1

1 + 2�
f�k� , �A11�

where f�k� is an arbitrary function. In particular, we obtain
for the densities

2��� + 1�
N

L
= kR↑ − kL↑ +

1

2� + 1
�kR↓ − kL↓� , �A12�

2��� + 1�
Ns

L
= kR↑ − kL↑ − �kR↓ − kL↓� , �A13�

4��� + 1�
P

L
= kR↑

2 − kL↑
2 +

1

2� + 1
�kR↓

2 − kL↓
2 � , �A14�

4��� + 1�
Ps

L
= kR↑

2 − kL↑
2 − �kR↓

2 − kL↓
2 � , �A15�

12��� + 1�
E

L
= kR↑

3 − kL↑
3 +

1

2� + 1
�kR↓

3 − kL↓
3 � . �A16�

So far we presented the values of the conserved quantities for
the sCM in terms of dressed Fermi momenta. They are given
by linear combinations of Fermi momenta raised to the same
power. There are infinitely many integrals of motion of this
type and they are all in involution �commute with each
other�. The latter is a pretty stringent requirement and we
assume that the only way to satisfy it is to require that the
corresponding classical hydrodynamic fields have the fol-
lowing Poisson’s brackets:

k	�x�,k��y�� = 2�s	�	����x − y� , �A17�

where 	 runs over all Fermi points and s	 are some numbers
to be determined. We can determine these numbers, e.g., in
the following way. The density of current j �momentum per
unit length� from Eq. �A14� can be defined by

j�x� =
1

4��� + 1��kR↑
2 − kL↑

2 +
1

2� + 1
�kR↓

2 − kL↓
2 �	 .

�A18�

The total momentum of the system is a generator of the
translation algebra P ,q�y��=�yq�y�, where q�y� is any field.
For the current density we should have

j�x�,q�y�� = q�x����x − y� . �A19�

Taking q�y� to be k	�y� and combining Eq. �A19� with Eq.
�A17� we fix the unknown coefficients s	

sR↑ = − sL↑ = � + 1,

sR↓ = − sL↓ = �� + 1��2� + 1� . �A20�

Computing Poisson’s bracket of the hydrodynamic Hamil-
tonian 
obtained from Eq. �A16��

H =
1

12��� + 1�� dx�kR↑
3 − kL↑

3 +
1

2� + 1
�kR↓

3 − kL↓
3 �	

�A21�

with k	�x� we obtain Riemann-Hopf Eq. �43� for every Fermi
momentum field k	�x , t�.

APPENDIX B: HYDRODYNAMIC VELOCITIES

In Appendix A we did not use the notion of hydrodynamic
velocity. Instead, our hydrodynamic equations were written
directly in terms of dressed Fermi momentum fields k	�x , t�.
We also know how to express other quantities such as den-
sity, momentum, energy, etc., in terms of these variables. Let
us now find the expressions for the velocity fields v↑,↓. We
focus on the CO regime here and consider other regimes in
Appendix C.

First of all we, give the expressions for the conserved
densities and conserved current densities which can be found
from Eqs. �A12� and �A13� as

�↑ =
� + �s

2
=

1

2��� + 1��kR↑ − kL↑ −
�

2� + 1
�kR↓ − kL↓�	 ,

�↓ =
� − �s

2
=

1

2��2� + 1�
�kR↓ − kL↓� ,

j↑ =
j + js

2
=

1

4��� + 1��kR↑
2 − kL↑

2 −
�

2� + 1
�kR↓

2 − kL↓
2 �	 ,

�B1�

j↓ =
j − js

2
=

1

2��2� + 1�
�kR↓

2 − kL↓
2 � . �B2�

In hydrodynamics, the velocities are defined as variables
conjugated to the conserved momenta. Namely, the differen-
tial of the energy density defines chemical potentials and
velocities as

d� = �↑d�↑ + �↓d�↓ + v↑
hdj↑ + v↓

hdj↓. �B3�

Using the energy density obtained from Eq. �A21� we have

d� =
1

4��� + 1��kR↑
2 dkR↑ − kL↑

2 dkL↑ +
1

2� + 1
�kR↓

2 dkR↓

− kL↓
2 dkL↓�	 �B4�

and using Eqs. �B1� and �B2� one can determine �↑,↓ and
v↑,↓. The hydrodynamic velocities are given by linear com-
binations of Fermi momenta46
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v↑
h =

1

2
�kR↑ + kL↑� ,

v↓
h =

1

2�� + 1�

��kR↑ + kL↑� + �kR↓ + kL↓�� . �B5�

Using Eqs. �A17� and �A20� one can check that the velocities

Eq. �B5�� have canonical Poisson’s brackets with densities

Eq. �B1��46

�	�x�,v��y�� = �	����x − y� , �B6�

where 	 ,�= ↑ ,↓. The other Poisson’s brackets vanish.
The hydrodynamic velocities 
Eq. �B5�� are precisely the

ones used in the main body of this paper for CO regime
v↑,↓=v↑,↓

h . Equations �48� and �49� are the inverse to Eqs.
�B1� and �B5�. Interestingly, in the CO regime the velocities
and densities of different species can be naturally �simply�
written in terms of bare noninteracting momenta 
Eqs. �29�
and �30��.

The current density in terms of densities and velocities
follows from Eq. �A18� 
compare with Eq. �31��

j�x� = �↑v↑ + �↓v↓. �B7�

The density of “spin current” which follows from Eq. �A15�
has a “correction” proportional to � compared to the case of
free fermions

js�x� = �↑v↑ − �↓v↓ + 2��↓�v↑ − v↓� . �B8�

In this appendix we focused on CO regime. Of course, the
formalism reviewed here is applicable to all three hydrody-
namic regimes �CO, PO, and NO�. We collect appropriate
results in Appendix C.

APPENDIX C: HYDRODYNAMIC REGIMES FOR SPIN-
CALOGERO MODEL

Depending on the relative order of four quantum numbers
�R,L;↑,↓ we distinguish six different hydrodynamic regimes of
the sCM. These regimes can be reduced to three essentially
different ones exchanging ↑↔↓. In this appendix we con-
sider these three regimes and then combine all six cases.

Before we proceed, let us remark that the function k���
defined in Eq. �A2� is monotonic and the order of the quan-
tum numbers �R,L;↑,↓ is the same as the one of the physical
dressed momenta kR,↑=k��R,↑�, etc. Therefore, we can use
the latter to define hydrodynamic regimes instead of the bare
momenta �.

1. Conserved densities and dressed Fermi momenta

Let us consider generally some integrable system which
has two infinite families of mutually commuting conserved
quantities. We assume further that the densities of these
quantities are given in terms of four dressed Fermi momenta
k	�x� with 	=1,2 ,3 ,4 as

jn�x� =
1

n
�
	=1

4

a	
k	�x��n,

jn
s�x� =

1

n
�
	=1

4

a	b	
k	�x��n. �C1�

Here n=1,2 ,3 , . . . and a	, b	 are constant coefficients. We
assumed that the conserved densities can be expressed lo-
cally in terms of k	 and neglected gradient corrections.

We identify the first several integrals with densities, cur-
rents, and the energy as

j1�x� = ��x� ,

j1
s�x� = �s�x� ,

j2�x� = j�x� ,

j2
s�x� = js�x� ,

j3�x� = 2��x� . �C2�

We notice here that due to Eqs. �A5�–�A8� the identifications

Eq. �C2�� 
with Eq. �C1�� are valid for sCM model in all its
regimes. The higher order conserved densities 
Eq. �C1��
correspond to conserved quantities of sCM introduced in
Ref. 45.

The requirement of vanishing Poisson’s brackets between
conserved quantities is very restrictive. It can be resolved by
requiring canonical Poisson’s brackets between Fermi mo-
menta 
Eq. �A17��. If Eq. �A17� is valid, it is easy to check
that �dxjn�x� ,�dyjm

s �y��=0, etc. Using the fact that the total
current is the generator of translations 
Eq. �A19�� we can fix
the coefficients s	 in Eq. �A17� as 2�s	=1 /a	 and obtain

k	�x�,k��y�� =
1

a	

�	����x − y� . �C3�

Using the Poisson’s brackets 
Eq. �C3�� and the Hamiltonian
H=�dx��x� with Eqs. �C2� and �C1� it is easy to obtain the
Riemann-Hopf evolution equations for the dressed Fermi
momenta

�tk	 + k	�xk	 = 0, for 	 = 1,2,3,4 �C4�

and the evolution equations for all conserved densities as

�t jn + �xjn+1 = 0,

�t jn
s + �xjn+1

s = 0. �C5�

In the hydrodynamic regime only four of the densities are
algebraically independent �as there are only four dressed
Fermi momenta�. Therefore, one can find constitutive rela-
tions, i.e., express the energy density in terms of �, �s, j, and
js. Alternatively, one can use hydrodynamic velocities vh and
vs

h defined by Eq. �B3� instead of currents j , js.
We can see that the hydrodynamics 
Eqs. �C1�–�C3�� is

fully defined by coefficients a	 ,b	. In fact, these coefficients
are not totally independent. Requiring that densities � and �s
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have vanishing Poisson’s brackets with themselves and with
each other gives three relations between the coefficients

�
	

a	 = 0,

�
	

b	a	 = 0,

�
	

b	
2a	 = 0. �C6�

For CO, PO, and NO regimes of sCM these coefficients are
summarized in the Table I. These coefficients do satisfy re-
lations �C6�.

The matrix of Poisson’s brackets of the dressed Fermi
momenta k	 
Eq. �C3�� is diagonal but not proportional to the
unit matrix. It is interesting that the Poisson’s brackets of
bare momenta �	 satisfy

�	�x�,���y�� = �− 1�	 L2

2�
�	����x − y� . �C7�

One then obtains that the velocities introduced in Eqs. �29�
and �30� are canonically conjugate to the corresponding den-
sities and can be written as linear combinations of �	 �and of
k	�. The velocities 
Eqs. �29� and �30�� are defined just as
conjugate variables to the densities. This definition is not
unique. One can always shift v↑→v↑+2���↓ and
v↓→v↓−2���↑ with any number � without changing Pois-
son’s brackets. The particular choice of variables 
Eqs. �29�
and �30�� is convenient because it defines velocities continu-
ously across all hydrodynamic regimes. Moreover, we have

v↑,↓ = v↑,↓
h , for CO,

v↑,↓ = v↑,↓
h � ���↓,↑, for NO. �C8�

In PO regime the hydrodynamic velocities are not linear
combinations of k	 and their relations to the conjugated vari-
ables v↑,↓ used in this paper are more complicated.

2. Complete overlap regime (CO)

The complete overlap regime corresponds to the case
when

−
�

2
��s� � vs �

�

2
��s� . �C9�

In this case the support of ↓ is a subset of the support of ↑
�or vice versa�. In the main body of the paper we mostly
concentrated on this case but for convenience we recap the
main formulas in this appendix as well. The dressed mo-
menta 
Eq. �A2�� in the CO regime for �s�0, i.e., for the
ordering

kL↑ � kL↓ � kR↓ � kR↑ �C10�

are

kR↑,L↑ = v↑ � �
�� + 1��↑ + ��↓�

= v↑ � ��↑ � ���c,

kR↓,L↓ = �� + 1�v↓ − �v↑ � ��2� + 1��↓

= v↓ � ��↓ + ��− 2vs � 2��↓� . �C11�

Poisson’s brackets of k	 are given by Eq. �C3� with coeffi-
cients from the Table I. One can express all conserved den-
sities 
Eq. �C1�� in terms of dressed Fermi momenta using
the Table I. For example, the Hamiltonian 
see Eq. �C2��
reads

HCO =
1

12��� + 1�� dx�kR↑
3 − kL↑

3 +
1

2� + 1
�kR↓

3 − kL↓
3 �	 ,

�C12�

=� dx�1

2
�↑v↑

2 +
1

2
�↓v↓

2 +
�

2
�↓�v↑ − v↓�2 +

�2�2

6
�c

3

+
�2

6
��↑

3 + �↓
3� +

��2

6
�2�↑

3 + 3�↑
2�↓ + 3�↓

3�� . �C13�

The evolution equations are given by Eq. �C4� and can also
be recast in terms of equations for densities and velocities

Eqs. �38� and �39��.

3. Partial overlap regime (PO)

There are two regimes when the supports of ↑ and ↓
only partially overlap. Here we concentrate on the case for
which

TABLE I. Summary of three regimes.

	 L↑ R↑ L↓ R↓

CO 2���+1�a	 −1 1 − 1
2�+1

1
2�+1

kL↑�kL↓�kR↓�kR↑
b	 1 1 −�2�+1� 2�+1

PO 2���+1�a	 −1 1
2�+1 − 1

2�+1 1 kL↓�kL↑�kR↓�kR↑
b	 1 2�+1 −�2�+1� −1

NO 2���+1�a	 −1 1 −1 1 kL↓�kR↓�kL↑�kR↑
b	 1 1 −1 −1
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�

2
��s� � vs �

�

2
�c, �C14�

corresponding to the ordering

kL↓ � kL↑ � kR↓ � kR↑. �C15�

The other PO regime can be obtained by exchanging up and
down particles, i.e., by changing vs→−vs. In this case the
dressed momenta 
Eq. �A2�� are

kL↓ = v↓ − ��� + 1��↓ − ���↑ = v↓ − ��↓ − ���c,

kL↑ = v↑ + ��v↑ − v↓� − ��2� + 1��↑

= v↑ − ��↑ + ��2vs − 2��↑� ,

kR↓ = v↓ − ��v↑ − v↓� + ��2� + 1��↓

= v↓ + ��↓ − ��2vs − 2��↓� ,

kR↑ = v↑ + ��� + 1��↑ + ���↓ = v↑ + ��↑ + ���c

�C16�

and the Hamiltonian becomes 
see Table I and Eqs. �C1� and
�C2��

HPO =
1

12��� + 1�� dx�kR↓
3 − kL↑

3 +
1

2� + 1
�kR↑

3 − kL↓
3 �	

�C17�

=� dx�1

2
�↑v↑

2 +
1

2
�↓v↓

2 + ���↑�↓�v↓ − v↑�

−
�

12�

v↑ − v↓ − ���↑ + �↓��3 +

�2�2

6
��↑ + �↓�3

+
�2

6
�1 + 2����↑

3 + �↓
3�� . �C18�

Poisson’s brackets of k	 are given by Eq. �C3� with coeffi-
cients from the Table I and evolution equations are given by
Eq. �C4�.

4. No overlap regime (NO)

In this case, the supports of ↑ and ↓ do not overlap at all.
For vs�0 the ordering of dressed Fermi momenta is

kL↓ � kR↓ � kL↑ � kR↑ �C19�

and momenta themselves are

kR↑,L↑ = v↑ + ���↓ � ��� + 1��↑ = v↑ � ��↑ � ���c,s,

kR↓,L↓ = v↓ − ���↑ � ��� + 1��↓ = v↓ � ��↓ − ���s,c

�C20�

and the Hamiltonian becomes 
see Table I and Eqs. �C1� and
�C2��

HNO =
1

12��� + 1�� dx
kR↑
3 − kL↑

3 + kR↓
3 − kL↓

3 � , �C21�

=� dx�1

2
�↑v↑

2 +
1

2
�↓v↓

2 + ���↑�↓�v↑ − v↓�

+
�2

6
�� + 1�2��↑ + �↓�3 −

�2

2
�1 + 2���↑�↓��↑ + �↓�� .

�C22�

Poisson’s brackets of k	 are given by Eq. �C3� with coeffi-
cients from the Table I and evolution equations are given by
Eq. �C4�.

5. All cases combined

It is possible to combine all hydrodynamic regimes into
relatively compact expressions introducing absolute values
of hydrodynamic fields. A general Hamiltonian valid for all
regimes takes a form

H =� dx�1

2
�↑v↑

2 +
1

2
�↓v↓

2 +
�2

6
��↑

3 + �↓
3� +

�2

6
�2�c

3

+
�2

3
2���↑

3 + �↓
3� + ��c�1�2 −

�

3�
���1�3 + ��2�3�

+
�

3�

��1�3 − �1

3 + ��2�3 + �2
3�� , �C23�

where we introduced the following notations

�1,2 � vs �
�

2
�s, �C24�

TABLE II. Classification of different regimes: + indicates that the field takes positive values and −
indicates that it is negative. A blank means that its sign is arbitrary.

k inequality vs �s �1=vs+ �

2 �s �2=vs− �

2 �s �1=vs+ �

2 �c �2=vs− �

2 �c vs inequality Regime

kL↑�kR↑�kL↓�kR↓ − − − − − vs�− �

2 �c NO

kL↑�kL↓�kR↑�kR↓ − − − + − − �

2 �c�vs�− �

2 ��s� PO

kL↓�kL↑�kR↑�kR↓ − − + + − �

2 �s�vs�− �

2 �s CO

kL↑�kL↓�kR↓�kR↑ + + − + − − �

2 �s�vs�
�

2 �s CO

kL↓�kL↑�kR↓�kR↑ + + + + − �

2 ��s��vs�
�

2 �c PO

kL↓�kR↓�kL↑�kR↑ + + + + + �

2 �c�vs NO
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�1,2 � vs �
�

2
�c. �C25�

Hamiltonian �C23� can be obtained from Eqs. �20� and �21�
for the general case of a two-step distribution function
↑,↓���. We collect in the Table II the information necessary
to go quickly from the general expression �C23� to the par-
ticular ones valid in separate regimes �CO, PO, or NO�.

We can combine the evolution equations following from
Eq. �C23� in the spin/charge basis 
Eq. �12�� as

�̇c = − �x�cvc + �svs� , �C26�

�̇s = − �x��cvs + �svc −
�

�

�1��1� + �2��2� − �1��1� − �2��2��� ,

�C27�

v̇c = − �x�vc
2 + vs

2

2
+

�2

8

�4�2 + 2� + 1��c

2 + �2� + 1��s
2�

+
�

2

�1��1� − �2��2��� , �C28�

v̇s = − �x�vcvs +
�2

4
�2� + 1��c�s −

�

2

�1��1� − �2��2��� .

�C29�

For CO and PO regimes Hamiltonian �C23� takes an espe-
cially simple form in terms of dressed momenta

HCO and PO =
1

12��2� + 1�� dx�kR↑
3 − kL↑

3 + kR↓
3 − kL↓

3

+
�

�� + 1�

�kL↑

3 − kL↓
3 � + �kR↑

3 − kR↓
3 ��� , �C30�

which are related to density and velocity fields as

kR↑,L↑ = v↑ � ��� + 1��↑ + ��1,2 � ���1,2� ,

kR↓,L↓ = v↓ � ��1 + ���↓ − ��2,1 � ���1,2� . �C31�

As in the separate cases considered before, these momenta
have canonical Poisson’s brackets 
Eq. �A17�� with

sR↑,R↓ = �� + 1�
� + 1 � � sgn��1�� ,

sL↑,L↓ = − �� + 1�
� + 1 � � sgn��2�� �C32�

and evolve independently according to the Riemann-Hopf
Eq. �C4�.

APPENDIX D: HYDRODYNAMIC DESCRIPTION OF
HALDANE-SHASTRY MODEL FROM ITS BETHE-ANSATZ

SOLUTION

The HSM is a Heisenberg spin chain with long-ranged
interaction defined by the Hamiltonian

HHSM =
1

2�
j�l

K jl

d�j − l�2 , �D1�

where Kjl is the spin-exchange operator,47

K jl =
�� j · �� l + 1

2
, �D2�

and d�j���N /���sin��j /N�� is the chord distance between
two points on a lattice with N sites and periodic boundary
conditions. The model 
Eq. �D1�� has been introduced inde-
pendently at the same time by Haldane32 and by Shastry33

and has been shown to be integrable. The energy spectrum of
the HSM is equivalent to that of the Calogero-Sutherland
model at �=2 but with a high degeneracy due to the Yangian
symmetry.48,49

In this appendix we used the Bethe-Ansatz solution32,50,51

to construct a gradientless hydrodynamic description for the
HSM similarly to what we have done for the sCM model in
Sec. IV and Appendix A. To this end, we consider a state
with M overturned spins over an initial ferromagnetic con-
figuration �say from up to down and M �N /2� and introduce
M integer quantum numbers �’s to characterize the state in
the Bethe-Ansatz formalism. As before such state can be
described by a distribution function ���=0,1, depending on
whether that quantum number is present or not in the BA
solution. Following Ref. 32 we impose a condition on the
integer numbers: ���� �N−M −1� /2.52

The scattering phase for the HSM is

��k� = � sgn�k� , �D3�

which corresponds to setting �=1 into Eq. �A1�.53 Please
note that since we are considering a lattice model, the mo-
mentum is defined within the Brillouin zone: −��k��,
where we took the lattice spacing as unity.

At this point, all the derivations of Appendix A can be
repeated step by step for the HSM just by setting everywhere
�=1 and remembering that the momentum is always defined
modulo 2�. In particular, the dressed momentum is

k��� =
2�

L
�� +

1

2
� sgn�� − ���̃����d��	 , �D4�

where again we replaced sgn�k−k�� by sgn��−��� �Ref. 44�
and the distribution of the physical momenta is given by

���d� =
N

4�
�k�dk . �D5�

In terms of this distribution function, the conserved quanti-
ties can be written as

M = N� dk

4�
�k� , �D6�

P = N� dk

4�
�k�k , �D7�

E = E0 + N� dk

4�
�k�

k2

2
, �D8�

where the momentum is defined only modulo 2�. From now
on, we will drop the constant energy shift E0.

In a hydrodynamic description we assume a distribution
of the uniform type
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�k� = �1, if − � � kL � k � kR � � ,

0, otherwise,
� �D9�

where kR,L are some numbers. Using Eq. �D9� and introduc-
ing space-dependent fields instead of constants we write Eqs.
�D6� and �D7� as

M =� dx
kR − kL

4�
=� dx� , �D10�

P =� dx
kR

2 − kL
2

8�
=� dx�v , �D11�

which suggests the identification

kR,L = v � 2�� . �D12�

Then the hydrodynamic Hamiltonian follows from Eq. �D8�,

HHSM =� dx
kR

3 − kL
3

24�
=� dx�1

2
�v2 +

2

3
�2�3	 , �D13�

which corresponds, as expected, to the �gradientless� hydro-
dynamic of a �=1 spinless Calogero-Sutherland model 
Eq.
�37��.

We think of slowly varying fields ��x , t� and v�x , t� as of
classical fields obeying the Poisson relation ��x� ,v�y��
=���x−y�. Then Eq. �D13� generates the evolutions equa-
tions

�̇ = − �x��v� ,

v̇ = − �x�v2

2
+

�2

2
4�2� . �D14�

One can easily recognize in Eq. �D14� the hydrodynamics of
spinless Calogero-Sutherland model 
Eq. �37�� for �=1. The
correspondence between eigenstates and eigenenergies of
Haldane-Shastry model with �=2 spinless Calogero-
Sutherland model has been noticed in the original paper.32

The degeneracy of the states due to the SU�2� invariance and
Yangian symmetry is lost in our classical hydrodynamics
model.

For comparisons with the derivations from freezing trick20

in Sec. VI we express Eqs. �D13� and �D17� in terms of �s
and vs used in the main body of the paper. We identify the
density �=M /N=�↓ as the density of spin-down particles
and the velocity v as a velocity of spin-down particles rela-
tive to the static background of spin-up particles, i.e.,
v=v↑−v↓=−2vs. The charge density corresponding to the
lattice with spacing one is just �0=1. We summarize

� = �↓ =
�0 − �s

2
, v = − 2vs, �0 = 1. �D15�

Using Eq. �D15� we rewrite Eq. �D13� as

HHSM =� dx��0vs
2 − �svs

2 +
�2�0�s

2

4
−

�2�s
3

12
� , �D16�

where we neglected a constant and a term linear in �s, which
amounts to a shift in the chemical potential. The evolution
equations for the spin density and spin velocity follow from
Eqs. �D14� and �D15�

�̇s = − �x2vs�0 − 2vs�s� ,

v̇s = − �x�− vs
2 +

�2

2
�0�s −

�2

4
�s

2� . �D17�

We notice that the above Eqs. �D16� and �D17� is nothing but
the strong-interaction limit of the sCM 
Eqs. �53�, �56�, and
�58��.

Finally, we remark that it is easy to check that the distri-
bution function 
Eq. �D9�� implies that −

��s

2 �vs�
��s

2 and
therefore corresponds to the CO regime of spin-Calogero
model.

Both in this appendix and in writing classical hydrody-
namics for sCM we neglected the degeneracy of the corre-
sponding quantum models due to the Yangian symmetry.48,49

We assumed that during the evolution string states are not
excited. Of course, the degeneracy plays a very important
role for perturbed integrable systems and for the hydrody-
namics at finite temperatures.
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